Demand Response (DR) facilitates the monitoring and management of appliances in energy grids by employing methods that, for example, increase the reliability of energy grids and reduce users' cost. Within energy grids, Smart Home scenarios can be characterized by a unique combination of appliances and user preferences. To increase their impact, a scenario-specific selection of the best performing DR methods is necessary. As the user faces a multitude of heterogeneous DR methods to choose from, a complex decision problem is present. The primary goal of this study is to develop a decision support framework that can determine the bestperforming DR methods. Building on literature analyses, expert workshops and expert interviews, we identify seven requirements, derive solution concepts addressing these requirements, and develop the framework by combining the concepts using a benchmarking process as a template. To demonstrate the framework's applicability, we conduct a simulation study that uses artificial (simulated) data for seven types of households. Within this study, we employ four DR methods, assume changing appliances over time and cost minimization as primary objective. The study indicates, that by using the framework and thus by identifying and using the best DR method for each scenario, the users can achieve further cost benefits. The application of the framework allows practitioners to increase the efficiency of the DR method selection process and to further enhance DR-related benefits, such as cost minimization, load profile flattening, and peak load reduction. Researchers benefit from guidance for benchmarking and evaluating DR methods.