This study characterizes for the first time the distribution and coexistence patterns of calbindin (CB), calretinin (CR), and parvalbumin (PV) in the female and male guinea pig preoptic area (POA) during brain development, using immunohistochemistry and quantitative real‐time PCR techniques. The results show that the prenatal development of the guinea pig POA takes place in elevated levels of CB and CR immunoreactivity with the peak at embryonic day 50 (E50) and generally in newborns both these proteins reach an adult‐like pattern of immunoreactivity, contrary to PV which appears later, peaks at postnatal day (PND) 10 (P10), and stabilizes at P20. CB and CR have also overlapping distributions which differed from that of PV, and much higher expressions at mRNA and protein levels. However, CB‐positive (+), CR+ and PV+ neurons create in the guinea pig POA separate populations as CB and CR coexisted only in a small number of neurons and CB+ cells never coexpressed PV. Moreover, the density of CB+ neurons, contrary to CR+ and PV+ cells, is sexually dimorphic favoring males at all the examined stages. In conclusion, elevated levels of CR and CB at the time of intense cell migration, differentiation, myelination, and synaptogenesis in the guinea pig brain suggest that these proteins may be engaged in similar processes in the POA, while late onset of PV may be rather linked with POA maturation. As the population of CB+ cells in the POA is very large, its dimorphic development may have huge impact on the sexual differentiation of this brain region.