The biodegradation of polycyclic aromatic hydrocarbons (PAHs) in soils by laccase is reported. However, the low laccase activities of free laccase have limited its applications in environmental bioremediation. In this study, polluted soil was made with 3:1 volume ratio of soil to PAH solution. Subsequently, the adsorption-cross-link composite immobilization method was applied to immobilize laccase derived from fungi onto nylon net and chitosan, respectively. These two kinds of immobilized laccase were used in the degradation of pyrene (Pyr) and benzo[a]pyrene (BaP), and their degradation efficiencies under different temperature and pH conditions were investigated. Consequently, the optimal laboratory experimental parameters were determined as follows: first, compared with free laccase, the degradation rates of Pyr and BaP by immobilized laccase increased by around 10-30 %; second, the degradation efficiency of chitosan as a carrier of immobilized laccase was much better than that of nylon net as a carrier of the immobilized laccase; finally, when the temperature was set at 40 °C and the pH was set at 4, the degradation efficiency achieved by immobilized laccase was the best.