Considering the problems of model uncertainties, higher harmonics, uncertain boundary conditions, external excitations, and system time delay in practical vibration control system, a novel active vibration control method is proposed to suppress the vibration of a thin plate structure with acceleration sensor and piezoelectric bimorph actuator in this paper. First, a nonlinear extended state observer (NESO)-based controller is designed to ensure the anti-disturbance performance of the structural vibration control system. Then, an enhanced differentiator-based time delay compensation method is introduced to improve the vibration suppression performance of the NESO-based controller. A real time hardware-in-the-loop benchmark for an all-clamped piezoelectric thin plate is designed to verify and compare the performance of the developed controller against conventional ESO-based methods (linear ESO with/without time delay compensation, NESO without time compensation). The best vibration suppression and disturbance rejection performance of the proposed NESO-based controller with an enhanced time delay compensator is verified in the comparative experimental results. This work is able to provide practitioners with vital guidance in designing active vibration control system in the presence of disturbances and time delay.