We propose a new scheme to control the coexisting attractors in a bistable piezomagnetoelastic power generator. Coexisting periodic or chaotic attractors frequently occur in nonlinear energy harvesters. For effective performance of the energy harvester, the system is desired to operate on the high-energy periodic orbit. Therefore, a controller may be used to force the system to operate on the high-energy orbit. In the present research, a disturbance observer–based terminal sliding mode control with input saturation is proposed to push the system from low-energy periodic and chaotic attractors to high-energy periodic attractors. Furthermore, to minimize the energy required for the controller, a genetic algorithm optimization is employed to determine the bound of the input saturation and parameters of the controller. A major advantage of the proposed control technique is tracking control while control input limitations, significant concerns for energy harvesting purpose, are present. The Lyapunov stability theorem of the closed-loop system is proven in the presence of control input saturation and external disturbance. In addition to the primary resonance, superharmonic resonance is considered. The numerical results show that the proposed method can successfully control and shift the vibration energy harvesting system between different attractors in the presence of uncertainty and with minimal control energy budget.
In this article, the position tracking control of the wheelchair upper-limb exoskeleton robotic system is investigated with the aim of rehabilitation of disabled people. Hence, the fuzzy nonsingular terminal sliding mode control method by using the state observer with a fixed-time convergence rate is designed in three main parts. In the first part, the fixed-time state observer is proposed for estimation of the states of the system. Secondly, the fixed-time convergence of position tracking error of the upper-limb exoskeleton robot system is examined by using the nonsingular terminal sliding mode control approach. In the third part, with the target of the improvement of the controller performance for removal of the chattering phenomenon which diminishes the controller performance, the fuzzy control method is used. Finally, the efficiency and proficiency of the proposed control method on the upper limb exoskeleton robotic system are demonstrated via the simulation results which are provided by MATLAB/Simulink software. In this part, simulation results are obtained based on different initial conditions in two examples using various desired values. Thus, it can be demonstrated that the proposed method applied to the upper-limb exoskeleton robot system is robust under various initial conditions and desired values.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.