Amide hydrogen exchange (HX) is widely used in protein biophysics even though our ignorance about the HX mechanism makes data interpretation imprecise. Notably, the open exchange-competent conformational state has not been identified. Based on analysis of an ultralong molecular dynamics trajectory of the protein BPTI, we propose that the open (O) states for amides that exchange by subglobal fluctuations are locally distorted conformations with two water molecules directly coordinated to the N-H group. The HX protection factors computed from the relative O-state populations agree well with experiment. The O states of different amides show little or no temporal correlation, even if adjacent residues unfold cooperatively. The mean residence time of the O state is ∼100 ps for all examined amides, so the large variation in measured HX rate must be attributed to the opening frequency. A few amides gain solvent access via tunnels or pores penetrated by water chains including native internal water molecules, but most amides access solvent by more local structural distortions. In either case, we argue that an overcoordinated N-H group is necessary for efficient proton transfer by Grotthuss-type structural diffusion.protein dynamics | hydration | proton transfer | MD simulation | BPTI B efore the tightly packed and densely H-bonded structure of globular proteins had been established, Hvidt and Linderstrøm-Lang (1) showed that all backbone amide hydrogens of insulin exchange with water hydrogens, implying that all parts of the polypeptide backbone are, at least transiently, exposed to solvent. In the following 60 y, hydrogen exchange (HX), usually monitored by NMR spectroscopy (2) or mass spectrometry (3), has been widely used to study protein folding and stability (4-10), structure (11, 12), flexibility and dynamics (13-15), and solvent accessibility and binding (16,17), often with single-residue resolution. However, because the exchange mechanism is unclear, HX data from proteins can, at best, be interpreted qualitatively (18)(19)(20)(21)(22)(23)(24)(25).Under most conditions, amide HX is catalyzed by hydroxide ions (26, 27) at a rate that is influenced by inductive and steric effects from adjacent side chains (28). For unstructured peptides, HX is a slow process simply because the hydroxide concentration is low. For example, at 25°C and pH 4, HX occurs on a time scale of minutes. Under similar conditions, amides buried in globular proteins exchange on a wide range of time scales, extending up to centuries. HX can only occur if the amide is exposed to solvent, so conformational fluctuations must be an integral part of the HX mechanism (18).Under sufficiently destabilizing conditions HX occurs from the denatured-state ensemble, but under native conditions few amides exchange by such global unfolding (9, 29-31). For example, in bovine pancreatic trypsin inhibitor (BPTI), 8 amides in the core β-sheet exchange by global unfolding under native conditions (7, 32), whereas the remaining 45 amides require less extensive conforma...