This review focuses on the structure and mode-of-action of non-lanthionine-containing peptide bacteriocins produced by Gram-positive bacteria. These bacteriocins may be divided into four groups: (i) the anti-listerial one-peptide pediocin-like bacteriocins that have very similar amino acid sequences, (ii) the two-peptide bacteriocins that consist of two different peptides, (iii) the cyclic bacteriocins, and (iv) the linear non-pediocin-like one-peptide bacteriocins. These bacteriocins are largely cationic, contain 20 to 70 residues, and kill cells through membrane-permeabilization. The pediocin-like bacteriocins are the ones that are best characterized. Upon contact with target membranes, their cationic N-terminal half forms a beta-sheet-like structure that binds to the target cell surface, while their more hydrophobic helical-containing C-terminal half penetrates into the hydrophobic core of target-cell membranes and apparently binds to the mannose phosphotransferase permease in a manner that results in membrane leakage. Immunity proteins that protect cells from being killed by pediocin-like bacteriocins bind to the bacteriocin-permease complex and prevent bacteriocin-induced membrane-leakage. Recent structural analyses of two-peptide bacteriocins indicate that they form a helix-helix structure that penetrates into cell membranes. Also these bacteriocins may act by binding to integrated membrane proteins. It is proposed that many membrane-active peptide bacteriocins kill target-cells through basically the same mechanism; the common theme being that a membrane-penetrating part of bacteriocins bind to a membrane embedded region of an integrated membrane protein, thereby causing conformational alterations in the protein that in turn lead to membrane-leakage and cell death.
This review focuses on the structure and mode-of-action of the two-peptide (class-IIb) bacteriocins that consist of two different peptides whose genes are next to each other in the same operon. Optimal antibacterial activity requires the presence of both peptides in about equal amounts. The two peptides are synthesized as preforms that contain a 15–30 residue double-glycine-type N-terminal leader sequence that is cleaved off at the C-terminal side of two glycine residues by a dedicated ABC-transporter that concomitantly transfers the bacteriocin peptides across cell membranes. Two-peptide bacteriocins render the membrane of sensitive bacteria permeable to a selected group of ions, indicating that the bacteriocins form or induce the formation of pores that display specificity with respect to the transport of molecules. Based on structure–function studies, it has been proposed that the two peptides of two-peptide bacteriocins form a membrane-penetrating helix–helix structure involving helix–helix-interacting GxxxG-motifs that are present in all characterized two-peptide bacteriocins. It has also been suggested that the membrane-penetrating helix–helix structure interacts with an integrated membrane protein, thereby triggering a conformational alteration in the protein, which in turn causes membrane-leakage. This proposed mode-of-action is similar to the mode-of-action of the pediocin-like (class-IIa) bacteriocins and lactococcin A (a class-IId bacteriocin), which bind to a membrane-embedded part of the mannose phosphotransferase permease in a manner that causes membrane-leakage and cell death.
Abstract. It is well-established that dynamics are central to protein function; their importance is implicitly acknowledged in the principles of the Monod, Wyman and Changeux model of binding cooperativity, which was originally proposed in 1965. Nowadays the concept of protein dynamics is formulated in terms of the energy landscape theory, which can be used to understand protein folding and conformational changes in proteins. Because protein dynamics are so important, a key to understanding protein function at the molecular level is to design experiments that allow their quantitative analysis. Nuclear magnetic resonance (NMR) spectroscopy is uniquely suited for this purpose because major advances in theory, hardware, and experimental methods have made it possible to characterize protein dynamics at an unprecedented level of detail. Unique features of NMR include the ability to quantify dynamics (i) under equilibrium conditions without external perturbations, (ii) using many probes simultaneously, and (iii) over large time intervals. Here we review NMR techniques for quantifying protein dynamics on fast (ps-ns), slow (μs-ms), and very slow (s-min) time scales. These techniques are discussed with reference to some major discoveries in protein science that have been made possible by NMR spectroscopy.
The two-peptide class II bacteriocins consist of two different unmodified peptides, both of which must be present in about equal amounts in order for these bacteriocins to exert optimal antimicrobial activity. These bacteriocins render the membrane of target cells permeable to various small molecules. The genes encoding the two peptides of two-peptide bacteriocins are adjacent to each other in the same operon and they are near the genes encoding (i) the immunity protein that protects the bacteriocin-producing bacteria from being killed by their own bacteriocin, (ii) a dedicated ABC transporter that transports the bacteriocin out of the bacteriocin-producing bacteria, and (iii) an accessory protein whose specific role is not known, but which also appears to be required for secretion of the bacteriocin. The production of some two-peptide bacteriocins is transcriptionally regulated through a three-component regulatory system that consists of a membrane-interacting peptide pheromone, a membrane-associated histidine protein kinase, and response regulators. Structure analysis of three two-peptide bacteriocins (plantaricin E/F, plantaricin J/K, and lactococcin G) by CD (and in part by NMR) spectroscopy reveal that these bacteriocins contain long amphiphilic α-helical stretches and that the two complementary peptides interact and structure each other when exposed to membrane-like entities. Lactococcin G shares about 55% sequence identity with enterocin 1071, but these two bacteriocins nevertheless kill different types of bacteria. The target-cell specificity of lactococcin G-enterocin 1071 hybrid bacteriocins that have been constructed by site-directed mutagenesis suggests that the β-peptide is important for determining the target-cell specificity.
Enzymes employ a wide range of protein motions to achieve efficient catalysis of chemical reactions. While the role of collective protein motions in substrate binding, product release, and regulation of enzymatic activity is generally understood, their roles in catalytic steps per se remain uncertain. Here, molecular dynamics simulations, enzyme kinetics, X-ray crystallography, and nuclear magnetic resonance spectroscopy are combined to elucidate the catalytic mechanism of adenylate kinase and to delineate the roles of catalytic residues in catalysis and the conformational change in the enzyme. This study reveals that the motions in the active site, which occur on a time scale of picoseconds to nanoseconds, link the catalytic reaction to the slow conformational dynamics of the enzyme by modulating the free energy landscapes of subdomain motions. In particular, substantial conformational rearrangement occurs in the active site following the catalytic reaction. This rearrangement not only affects the reaction barrier but also promotes a more open conformation of the enzyme after the reaction, which then results in an accelerated opening of the enzyme compared to that of the reactant state. The results illustrate a linkage between enzymatic catalysis and collective protein motions, whereby the disparate time scales between the two processes are bridged by a cascade of intermediate-scale motion of catalytic residues modulating the free energy landscapes of the catalytic and conformational change processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.