Atherosclerosis (AS) is a chronic inflammatory disease of large- and medium-sized arteries that causes ischemic heart disease, strokes, and peripheral vascular disease, collectively called cardiovascular disease (CVD), and is the leading cause of CVD resulting in a high rate of mortality in the population. AS is pathological by plaque development, which is caused by lipid infiltration in the vessel wall, endothelial dysfunction, and chronic low-grade inflammation. Recently, more and more scholars have paid attention to the importance of intestinal microecological disorders in the occurrence and development of AS. Intestinal G-bacterial cell wall lipopolysaccharide (LPS) and bacterial metabolites, such as oxidized trimethylamine (TMAO) and short-chain fatty acids (SCFAs), are involved in the development of AS by affecting the inflammatory response, lipid metabolism, and blood pressure regulation of the body. Additionally, intestinal microecology promotes the progression of AS by interfering with the normal bile acid metabolism of the body. In this review, we summarize the research on the correlation between maintaining a dynamic balance of intestinal microecology and AS, which may be potentially helpful for the treatment of AS.