We present directional photonic crystal light emitters produced as periodic semipolar GaInN quantum wells, grown by selective area metal organic vapour phase epitaxy. The emitted angle-dependent modal structure for sub-micrometer stripes and embedded photonic crystal structures is analyzed experimentally in detail, and the introduction of an Al0.12Ga0.88N cladding layer is investigated. We provide a complete simulation based on the finite-difference time-domain method, which allows to identify all leaky modes as well as their spectral and angular dependence.