The Unkar Group of the Grand Canyon Supergroup is one of the best-preserved remnants of Mesoproterozoic sedimentary rocks in the southwestern United States. It provides an exceptional record of intracratonic basin formation and associated tectonics kinematically compatible with protracted "Grenville-age" NW-directed shortening. New U/Pb age determinations from an airfall tephra at the base of the Unkar Group dates the onset of deposition at ca. 1255 Ma, and 40 Ar/ 39 Ar K-feldspar thermochronology in the Grand Canyon indicates that basement rocks cooled through 150 °C between ca. 1300 and 1250 Ma, refi ning exhumation rates of basement rocks just prior to Unkar deposition.
Abrupt thickness and facies changes in conglomerate and dolomite of the Bass Formation (lower Unkar Group) associated with NE-striking monoclinal fl exures indicate NW-directed synsedimen-tary contraction at ca. 1250 Ma. A large disconformity (~75 m.y. duration) is inferred between the lower and upper Unkar Group and is located below the upper Hakatai Shale, as documented by detrital zircons. A second style of Unkar Group deformation involved the development of half grabens and full grabens that record NE-SW extension on NW-striking, high-angle normal faults. Several observations indicate that NW-striking normal faulting was concurrent with upper Unkar deposition, mafi c magmatism, and early Nankoweap deposition: (1) intraformational faulting in the Bass Formation, (2) intraformational faulting in the 1070 Ma (old Rb/Sr date) Cardenas Basalt and lower Nankoweap Formation, (3) syntectonic relationships between Dox deposition and 1104 Ma (new Ar/Ar date) diabase intrusion, and (4) an angular unconformity between UnkarGroup and Nankoweap strata. The two tectonic phases affecting the Unkar Group (ca. 1250 Ma and ca. 1100 Ma) provide new insight into tectonics of southern Laurentia:(1) Laramide-style (monoclines) deformation in the continental interior at ca. 1250 Ma records Grenville-age shortening; and (2) ca. 1100 Ma detrital muscovite (Ar/Ar) and zircon (U/Pb) indicate an Unkar Group source in the Grenville-age highlands of southwestern Laurentia during development of NWstriking extensional basins. We conclude that far-fi eld stresses related to Grenville-age orogenesis (NW shortening and orthogonal NE-SW extension) dominated the sedimentary and tectonic regime of southwestern Laurentia from 1250 to 1100 Ma.