Background
Separation of biotic and abiotic impacts on species diversity distribution patterns across a significant climatic gradient is a challenge in the study of diversity maintenance mechanisms. The basic task is to reconcile scale-dependent effects of abiotic and biotic processes on species distribution models. However, Eltonian noise hypothesis predicted that the effects of biotic interactions will be averaged out at macroscales, and there are many empirical observations that biotic interactions would constrain species distributions at micro-ecological scales. Here, we used a hierarchical modeling method to detect the host specificities of ambrosia beetles (Scolytinae and Platypodinae) with their dependent tree communities across a steep climatic gradient, which was embedded within a relatively homogenous spatial niche.
Results
Species turnover of both trees and ambrosia beetles have a relatively similar pattern, characterized by the climatic proxy at a regional scale, but not at local scales. This pattern confirmed the Eltonian noise hypothesis wherein emphasis was on influences of macro-climate on local biotic interactions between trees and hosted ambrosia beetle communities, whereas local biotic relations, represented by host specificity dependence, were regionally conserved.
Conclusions
At a confined spatial scale, cross-taxa comparisons of co-occurrence highlighted the importance of the organism’s dispersal. The effects of tree abundance and phylogeny diversity on ambrosia beetle diversity were, to a large extent, indirect, operating via changes in ambrosia beetle abundance through spatial and temporal dynamics of resources distribution. Tree host dependence plays a minor role on the hosted ambrosia beetle community in this concealed wood decomposing interacting system.