Block-fading channel (BF) is a useful model for various wireless communication channels in both indoor and outdoor environments. Frequency-hopping schemes and orthogonal frequency division multiplexing (OFDM) can conveniently be modelled as BF channels. Applying lattices in this type of channel entails dividing a lattice point into multiple blocks such that fading is constant within a block but changes, independently, across blocks. The design of lattices for BF channels offers a challenging problem, which differs greatly from its counterparts like AWGN channels. Recently, the original binary Construction A for lattices, due to Forney, has been generalized to a lattice construction from totally real and complex multiplication (CM) fields. This generalized algebraic Construction A of lattices provides signal space diversity, intrinsically, which is the main requirement for the signal sets designed for fading channels. In this paper, we construct full-diversity algebraic lattices for BF channels using Construction A over totally real number fields. We propose two new decoding methods for these family of lattices which have complexity that grows linearly in the dimension of the lattice. The first decoder is proposed for full-diversity algebraic LDPC lattices which are generalized Construction A lattices with a binary LDPC code as underlying code. This decoding method contains iterative and non-iterative phases. In order to implement the iterative phase of our decoding algorithm, we propose the definition of a