Fine particulate matter (PM2.5) is an important environmental risk factor for cardiovascular diseases. However, little is known about the effects of PM2.5 on arteries. The present study investigated whether PM2.5 alters 5‐hydroxytryptamine (5‐HT) receptor expression and inflammatory mediators on rat mesenteric arteries, and examined the underlying mechanisms. Isolated rat mesenteric arteries segments were cultured with PM2.5 in the presence or absence of ERK1/2, JNK, and p38 pathway inhibitors. Contractile reactivity was monitored by a sensitive myograph. The expression of 5‐HT2A/1B receptors and inflammatory mediators were studied by a real‐time polymerase chain reaction and/or by immunohistochemistry. The phosphorylation of mitogen‐activated protein kinases (MAPK) pathway was detected by Western blot. Compared with the fresh or culture alone groups, 1.0 μg/mL PM2.5 cultured for 16 hours significantly enhanced contractile response induced by 5‐HT and increased 5‐HT2A receptor mRNA and protein expressions, indicating PM2.5 upregulates 5‐HT2A receptor. SB203580 (p38 inhibitor) and U0126 (ERK1/2 inhibitor) significantly decreased PM2.5‐induced elevated contraction and mRNA and protein expression of 5‐HT2A receptor. Cultured with PM2.5 significantly increased the mRNA expression of inflammatory mediators (NOS2, IL‐1β, and TNF‐α), while SB203580 decreased mRNA expression level of NOS2, IL‐1β, and TNF‐α. SP600125 (JNK inhibitor) decreased mRNA expression level of TNF‐α and IL‐1β. After PM2.5 exposure, the phosphorylation of p38 and ERK1/2 protein were increased. SB203580 and U0126 inhibited the PM2.5 caused increased phosphorylation protein of p38 and ERK1/2. In conclusion, PM2.5 induces inflammatory‐mediated MAPK pathway in artery which subsequently results in enhanced vascular contraction responding to 5‐HT via the upregulated 5‐HT2A receptors.