Chronic kidney disease (CKD) patients have many affected physiological pathways. Variations in the genes regulating these pathways might affect the incidence and predisposition to this disease. A total of 722 Spanish adults, including 548 patients and 174 controls, were genotyped to better understand the effects of genetic risk loci on the susceptibility to CKD. We analyzed 38 single nucleotide polymorphisms (SNPs) in candidate genes associated with the inflammatory response (interleukins IL-1A, IL-4, IL-6, IL-10, TNF-α, ICAM-1), fibrogenesis (TGFB1), homocysteine synthesis (MTHFR), DNA repair (OGG1, MUTYH, XRCC1, ERCC2, ERCC4), renin-angiotensin-aldosterone system (CYP11B2, AGT), phase-II metabolism (GSTP1, GSTO1, GSTO2), antioxidant capacity (SOD1, SOD2, CAT, GPX1, GPX3, GPX4), and some other genes previously reported to be associated with CKD (GLO1, SLC7A9, SHROOM3, UMOD, VEGFA, MGP, KL). The results showed associations of GPX1, GSTO1, GSTO2, UMOD, and MGP with CKD. Additionally, associations with CKD related pathologies, such as hypertension (GPX4, CYP11B2, ERCC4), cardiovascular disease, diabetes and cancer predisposition (ERCC2) were also observed. Different genes showed association with biochemical parameters characteristic for CKD, such as creatinine (GPX1, GSTO1, GSTO2, KL, MGP), glomerular filtration rate (GPX1, GSTO1, KL, ICAM-1, MGP), hemoglobin (ERCC2, SHROOM3), resistance index erythropoietin (SOD2, VEGFA, MTHFR, KL), albumin (SOD1, GSTO2, ERCC2, SOD2), phosphorus (IL-4, ERCC4 SOD1, GPX4, GPX1), parathyroid hormone (IL-1A, IL-6, SHROOM3, UMOD, ICAM-1), C-reactive protein (SOD2, TGFB1,GSTP1, XRCC1), and ferritin (SOD2, GSTP1, SLC7A9, GPX4). To our knowledge, this is the second comprehensive study carried out in Spanish patients linking genetic polymorphisms and CKD.Chronic kidney disease (CKD) is becoming a major public health problem worldwide. CKD is defined as a progressive loss of renal function, measured by a decline in glomerular filtration rate (GFR < 60 mL/min/1.73 m 2 ) 1 , which is typically associated with irreversible pathological changes within the kidney. This pathology has a complicated interrelationship with other diseases 2,3 . Diabetes (DM) and hypertension (HT) are the primary risk factors for CKD 4 , and CKD is also associated with cardiovascular morbidity and mortality 5,6 , even in early stages and in young patients 7 .CKD patients are also characterized by a high genomic instability [8][9][10][11] . This instability could be translated to high levels of genetic damage measured by the incidence of chromosomal damage (micronuclei) when their cells are challenged with ionizing radiation 12 and could be either the cause or the consequence of renal pathologies. In addition, it has been observed that CKD patients repair less efficiently DNA damage 13 .CKD patients present increased levels of C-reactive protein (CRP), which is indicative of an inflammatory status 12,14,15 . Oxidative stress is also a characteristic usually shown by CKD patients [16][17][18][19] . Variants in genes reg...