Structural deoxyribonucleic acid (DNA) nanotechnology offers a robust platform for diverse nanoscale shapes that can be used in various applications. Among a wide variety of DNA assembly strategies, DNA origami is the most robust one in constructing custom nanoshapes and exquisite patterns. In this account, the static structural and functional patterns assembled on DNA origami are reviewed, as well as the reconfigurable assembled architectures regulated through dynamic DNA nanotechnology. The fast progress of dynamic DNA origami nanotechnology facilitates the construction of reconfigurable patterns, which can further be used in many applications such as optical/plasmonic sensors, nanophotonic devices, and nanorobotics for numerous different tasks.