Wall-bounded turbulent flows exhibit a zonal arrangement, in which streamwise velocity organizes into uniform momentum zones (UMZs), separated by thin layers of elevated interfacial shear. While significant research efforts have focused on these structural features in neutrally stratified flows, the effects of unstable thermal stratification on UMZs and on analogous uniform temperature zones (UTZs) have not been considered previously. In this article, statistical properties of UMZs and UTZs are investigated using a suite of large eddy simulations of unstably stratified turbulent channel flow spanning weakly to highly convective conditions. When normalized by the friction velocity and stability-dependent mixing length, the mean velocity gradient based on UMZ interfacial velocity jumps and the vorticity thickness exhibits good collapse for all stabilities, establishing a link between UMZ properties and scaling predictions from Monin–Obukhov similarity theory. A similar relationship is found between UTZ properties and surface-layer scaling of the mean temperature gradient. In the mixed layer, mean UMZ depth is quasi-constant with wall-normal distance, while the deepest UTZs are found in the centre of the boundary layer. These instantaneous structures are found to be linked to the well-mixed velocity and temperature profiles in the convective mixed layer. Conditional averaging indicates that both UMZ and UTZ interfaces are associated with ejections of momentum and warm updrafts below the interface and sweeps of momentum and cool downdrafts above the interface. These results demonstrate a tangible connection between instantaneous structural features, mean properties and scaling laws in unstably stratified flows.