A number of recent studies have shown that the non-radiative voltage losses in organic solar cells can be suppressed in systems with low energetic offsets between donor and acceptor molecular states, but the physical reasons underpinning this remain unclear. Here, we present a systematic study of 18 different donor:acceptor blends to determine the effect that energetic offset has on both radiative and non-radiative recombination of the charge transfer (CT) state. We find that for certain blends, low offsets result in hybridization between charge-transfer and lowest donor or acceptor exciton states, which leads to a strong suppression in the non-radiative voltage loss to values as low as 0.23V associated with an increase in the luminescence of the CT state. Further, we extend a two-state CT-state recombination model to include the interaction between CT and first excited states, which allows us to explain the low non-radiative voltage losses as an increase in the effective CT to ground state oscillator strength due to the intensity borrowing mechanism. We show that low non-radiative voltage losses can be achieved in material combinations with a strong electronic coupling between CT and first excited states, and where the lower band gap material has a high oscillator strength for transitions from the excited state to the ground state. Finally, from our model we propose that achieving very low non-radiative voltage losses may come at a cost of higher overall recombination rates, which may help to explain the generally lower FF and EQE of highly hybridized systems.