Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
A substantial minority of children with epilepsy have continued seizures despite adequate trials of standard antiseizure medications. To maximize seizure control and thereby optimize their neurodevelopmental outcomes, alternate nonmedication therapies should be considered for these patients. Dietary therapies, including the ketogenic diet and its variations, have been available for years. With a recent resurgence in popularity and expansion of indications, these treatments can lead to freedom from seizures or a significantly reduced seizure burden for a large number of patients. For carefully selected individuals, resective epilepsy surgery may offer the best hope for a cure. For others, palliation may be achieved through additional surgical approaches, such as corpus callosotomy and multiple subpial transections, or through neurostimulation techniques, such as the vagus nerve stimulator. In this review, we present these nonmedication approaches to treatment-resistant childhood epilepsy, with attention to patient selection and the potential risks and benefits.
A substantial minority of children with epilepsy have continued seizures despite adequate trials of standard antiseizure medications. To maximize seizure control and thereby optimize their neurodevelopmental outcomes, alternate nonmedication therapies should be considered for these patients. Dietary therapies, including the ketogenic diet and its variations, have been available for years. With a recent resurgence in popularity and expansion of indications, these treatments can lead to freedom from seizures or a significantly reduced seizure burden for a large number of patients. For carefully selected individuals, resective epilepsy surgery may offer the best hope for a cure. For others, palliation may be achieved through additional surgical approaches, such as corpus callosotomy and multiple subpial transections, or through neurostimulation techniques, such as the vagus nerve stimulator. In this review, we present these nonmedication approaches to treatment-resistant childhood epilepsy, with attention to patient selection and the potential risks and benefits.
Detection of epileptic spikes in MagnetoEncephaloGraphy (MEG) requires synchronized neuronal activity over a minimum of 4cm2. We previously validated the Maximum Entropy on the Mean (MEM) as a source localization able to recover the spatial extent of the epileptic spike generators. The purpose of this study was to evaluate quantitatively, using intracranial EEG (iEEG), the spatial extent recovered from MEG sources by estimating iEEG potentials generated by these MEG sources. We evaluated five patients with focal epilepsy who had a pre-operative MEG acquisition and iEEG with MRI-compatible electrodes. Individual MEG epileptic spikes were localized along the cortical surface segmented from a pre-operative MRI, which was co-registered with the MRI obtained with iEEG electrodes in place for identification of iEEG contacts. An iEEG forward model estimated the influence of every dipolar source of the cortical surface on each iEEG contact. This iEEG forward model was applied to MEG sources to estimate iEEG potentials that would have been generated by these sources. MEG-estimated iEEG potentials were compared with measured iEEG potentials using four source localization methods: two variants of MEM and two standard methods equivalent to minimum norm and LORETA estimates. Our results demonstrated an excellent MEG/iEEG correspondence in the presumed focus for four out of five patients. In one patient, the deep generator identified in iEEG could not be localized in MEG. MEG-estimated iEEG potentials is a promising method to evaluate which MEG sources could be retrieved and validated with iEEG data, providing accurate results especially when applied to MEM localizations. Hum Brain Mapp 37:1661-1683, 2016. © 2016 Wiley Periodicals, Inc.
wMEM allows non-invasive localization of the SOZ from ictal MEG and EEG. MSI-SOZ performs better than ESI-SOZ. MSI/ESI-SOZ can provide important additional information to MSI/ESI-Spikes during presurgical evaluation. Hum Brain Mapp 37:2528-2546, 2016. © 2016 Wiley Periodicals, Inc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.