Reductionism and complexity theory are two paradigms frequently found in language research. There exist a number of conflicts in terms of concepts and methodologies between reductionism and complexity theory, which are not conducive to creating a unified language research framework. This paper starts by discussing the adaptability of complex dynamic systems and combines cognitive processing model and artificial neural networks to construct and verify an adaptive weight model, showing that the study of reductionism is induction of high-weight elements and the study of complexity theory is a discussion of system complexity from adaptability, meaning that there is a good fit between the two frameworks. The adaptive weight model is conducive to developing a unified interpretation of language research results.