Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
OBJECTIVES Reports ranged from mixed to marginal tubing wear and spallation effects as a complication of roller pumps in cardiopulmonary bypass (CPB). Because the rollers constantly compress part of the tubing, we sought to determine whether circuit materials behave differently under a 3-h simulation of CPB. METHODS Two different tubing materials (silicone and Tygon) were tested with a customized experimental circuit, designed to allow in vitro simulation of CPB with priming volumes, pressures, revolutions per minute and temperatures equivalent to the clinical scenario. Samples were analysed with optical and field-emission scanning electron microscopy. We collected 200-ml fluid samples at 4 different times: before starting the CPB (T0), when the predicted revolutions per minute corresponded to about 2 min of CPB (T1), at 90 min (T2) and at 180 min (T3). At the end of CPB, we harvested 2 samples of tubing. Lastly, optical investigations and field-emission scanning electron microscopy observations were used for qualitative and quantitative analysis of circulating fragments. RESULTS T2 and T3 fluid samples showed more particles than T1 samples. Significant differences in terms of particle numbers were detected: silicone tubing released more fragments per millilitre than Tygon tubing, with both materials releasing particles from 5 to 500 µm. Silicone tubing was associated with a time-dependent increase in small particles released (P = 0.04), whereas this did not apply to large particles or to Tygon tubing. Yet, bootstrap estimates suggested that silicone tubing was associated with the release of more small particles whereas Tygon tubing released more large particles (both P < 0.01). Unlike silicone, Tygon samples taken from the portion of the circuit not subjected to the action of the roller pump did not show any erosion on their surfaces. Samples of both materials taken from the portion subjected to the compression of the roller pump showed signs of significant deterioration. CONCLUSIONS Silicone showed a worse spallation performance than Tygon, thus appearing less safe for more complex surgery of prolonged duration or for patients with a prior cerebral ischaemic event. Additional risk and cost-effectiveness comparisons to determine the potential benefits of one type of tubing material over the other are warranted to further expand our findings.
OBJECTIVES Reports ranged from mixed to marginal tubing wear and spallation effects as a complication of roller pumps in cardiopulmonary bypass (CPB). Because the rollers constantly compress part of the tubing, we sought to determine whether circuit materials behave differently under a 3-h simulation of CPB. METHODS Two different tubing materials (silicone and Tygon) were tested with a customized experimental circuit, designed to allow in vitro simulation of CPB with priming volumes, pressures, revolutions per minute and temperatures equivalent to the clinical scenario. Samples were analysed with optical and field-emission scanning electron microscopy. We collected 200-ml fluid samples at 4 different times: before starting the CPB (T0), when the predicted revolutions per minute corresponded to about 2 min of CPB (T1), at 90 min (T2) and at 180 min (T3). At the end of CPB, we harvested 2 samples of tubing. Lastly, optical investigations and field-emission scanning electron microscopy observations were used for qualitative and quantitative analysis of circulating fragments. RESULTS T2 and T3 fluid samples showed more particles than T1 samples. Significant differences in terms of particle numbers were detected: silicone tubing released more fragments per millilitre than Tygon tubing, with both materials releasing particles from 5 to 500 µm. Silicone tubing was associated with a time-dependent increase in small particles released (P = 0.04), whereas this did not apply to large particles or to Tygon tubing. Yet, bootstrap estimates suggested that silicone tubing was associated with the release of more small particles whereas Tygon tubing released more large particles (both P < 0.01). Unlike silicone, Tygon samples taken from the portion of the circuit not subjected to the action of the roller pump did not show any erosion on their surfaces. Samples of both materials taken from the portion subjected to the compression of the roller pump showed signs of significant deterioration. CONCLUSIONS Silicone showed a worse spallation performance than Tygon, thus appearing less safe for more complex surgery of prolonged duration or for patients with a prior cerebral ischaemic event. Additional risk and cost-effectiveness comparisons to determine the potential benefits of one type of tubing material over the other are warranted to further expand our findings.
Roller pumps have been widely used in the ventricular assist field for many years, while the significant hemolysis caused by its mechanical stress is still a fundamental problem. Although the usual under‐occlusion setting was considered as an effective method to reduce the hemolysis rate, its nonocclusive condition of the whole process may cause serious backflow results, which exactly places many restrictions on this method. In this study, the simulation experiments based on computational fluid dynamics (CFD) is conducted, and the occlusion angle is proposed and used to explore a more reliable adjustment form of the occlusion condition. The parameterized geometry of a roller pump is established based on the occlusion angle and other parameters. In order to simulate the motion of the roller, the dynamic mesh mode is introduced to the CFD model, and the analytic formulations used to determine the boundary position are derived. In the whole operation process of the roller pump, four feature positions of the rollers were focused and extracted, and the flow characteristics and the shear stress distribution at these positions were demonstrated. It was found that the entry and exit of the rollers could cause clear shear stress peak, especially when one roller entered, the peak got extremely high. Furthermore, the roller pumps with different occlusion angles were compared, and the results showed that decreasing the occlusion angle could lead to a notable decrease in the amplitude and range of high shear stress and the hemolysis index with a small loss of the occlusion duration. It can be concluded that appropriately decreasing the occlusion angle may be an effective method to alleviate the hemolysis which should be given more attention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.