Computational methods can increase productivity of drug discovery pipelines, through overcoming challenges such as cardiotoxicity identification. We demonstrate prediction and preservation of cardiotoxic relationships for six drug-induced cardiotoxicity types using a machine learning approach on a large collected and curated dataset of transcriptional and molecular profiles (1,131 drugs, 35% with known cardiotoxicities, and 9,933 samples). The algorithm generality is demonstrated through validation in an independent drug dataset, in addition to cross-validation. The best prediction attains an average accuracy of 79% in area under the curve (AUC) for safe versus risky drugs, across all six cardiotoxicity types on validation and 66% on the unseen set of drugs. Individual cardiotoxicities for specific drug types are also predicted with high accuracy, including cardiac disorder signs and symptoms for a previously unseen set of anti-inflammatory agents (AUC = 80%) and heart failures for an unseen set of anti-neoplastic agents (AUC = 76%). Besides, independent testing on transcriptional data from the Drug Toxicity Signature Generation Center (DToxS) produces similar results in terms of accuracy and shows an average AUC of 72% for previously seen drugs and 60% for unseen respectively. Given the ubiquitous manifestation of multiple drug adverse effects in every human organ, the methodology is expected to be applicable to additional tissuespecific side effects beyond cardiotoxicity.