2017
DOI: 10.1016/j.infsof.2017.05.001
|View full text |Cite
|
Sign up to set email alerts
|

Domain-aware Mashup service clustering based on LDA topic model from multiple data sources

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
28
0

Year Published

2019
2019
2024
2024

Publication Types

Select...
8
2

Relationship

3
7

Authors

Journals

citations
Cited by 62 publications
(28 citation statements)
references
References 18 publications
0
28
0
Order By: Relevance
“…-Information extraction (e.g., VSM) (Nguyen et al 2012;Zhang et al 2018;Chen et al 2020;Thomas et al 2013;Fowkes et al 2016); -Classification (e.g., Support Vector Machine -SVM) (Hindle et al 2013;Le et al 2017;Liu et al 2017;Demissie et al 2020;Zhao et al 2020;Shimagaki et al 2018;Gopalakrishnan et al 2017;Thomas et al 2013); -Clustering (e.g., K-means) (Jiang et al 2019;Cao et al 2017;Liu et al 2017;Zhang et al 2016;Altarawy et al 2018;Demissie et al 2020;Gorla et al 2014); -Structured prediction (e.g., Conditional Random Field -CRF) (Ahasanuzzaman et al 2019); -Artificial neural networks (e.g., Recurrent Neural Network -RNN) (Murali et al 2017;Le et al 2017); -Evolutionary algorithms (e.g., Multi-Objective Evolutionary Algorithm -MOEA) (Blasco et al 2020;Pérez et al 2018); -Web crawling (Nabli et al 2018). Pagano and Maalej (2013) was the only study that contributed an exploration that combined LDA with another text mining technique.…”
Section: Types Of Contributionmentioning
confidence: 99%
“…-Information extraction (e.g., VSM) (Nguyen et al 2012;Zhang et al 2018;Chen et al 2020;Thomas et al 2013;Fowkes et al 2016); -Classification (e.g., Support Vector Machine -SVM) (Hindle et al 2013;Le et al 2017;Liu et al 2017;Demissie et al 2020;Zhao et al 2020;Shimagaki et al 2018;Gopalakrishnan et al 2017;Thomas et al 2013); -Clustering (e.g., K-means) (Jiang et al 2019;Cao et al 2017;Liu et al 2017;Zhang et al 2016;Altarawy et al 2018;Demissie et al 2020;Gorla et al 2014); -Structured prediction (e.g., Conditional Random Field -CRF) (Ahasanuzzaman et al 2019); -Artificial neural networks (e.g., Recurrent Neural Network -RNN) (Murali et al 2017;Le et al 2017); -Evolutionary algorithms (e.g., Multi-Objective Evolutionary Algorithm -MOEA) (Blasco et al 2020;Pérez et al 2018); -Web crawling (Nabli et al 2018). Pagano and Maalej (2013) was the only study that contributed an exploration that combined LDA with another text mining technique.…”
Section: Types Of Contributionmentioning
confidence: 99%
“…e LDA is a well-known unsupervised machine learning technique for natural language processing [63] and is the simplest and most popular topic modelling algorithm [64,65], which has the advantage of recognizing the hidden topics and mining deep semantics of huge amounts of textual documents through an effective way. e basic idea of the LDA is that each document exhibits a mixture of latent topics wherein each topic is characterized by a distribution over the words, i.e., per-document topic distributions and per-word topic distributions [66,67].…”
Section: Topic Modellingmentioning
confidence: 99%
“…Mashups to derive potential topics, and they did not use FMs to model and train these potential topics to predict the probability of Mashup calling services to obtain more accurate service recommendation. In our previous work [8,27,28], we mainly address on LDA or enhanced LDA topic model for Web services clustering [27,28] and also exploit word embedding technique to enhance the accuracy of service clustering [8]. Driven by these methods, we combine FMs and word-embedded enhanced HDP for recommending mobile services to build novel Mashup application.…”
Section: Mobile Information Systemsmentioning
confidence: 99%