Mobile video processing as defined in standards like contains a number of timeconsuming computations that cannot be efficiently executed on current hardware architectures. The authors recently introduced a reconfigurable SoC platform that permits a low-power, high-throughput and flexible implementation of the motion estimation and DCT algorithms. The computations are done using domainspecific reconfigurable arrays that have demonstrated up to 75% reduction in power consumption when compared to generic FPGA architecture, which makes them suitable for portable devices. This paper presents and compares different configurations of the arrays to efficiently implementing DCT and motion estimation algorithms. A number of algorithms are mapped into the various reconfigurable fabrics demonstrating the flexibility of the new reconfigurable SoC architecture and its ability to support a number of implementations having different performance characteristics