The traditional anchoring method of bolts has insufficient control over the surrounding rock of the coal roadway. Based on this background, full-stress anchoring technology of bolts was proposed. Firstly, a mechanical relationship model of a bolt-drawing, anchoring interface was established to obtain the equations of the axial force and obtain shear stress distribution as well as the decreasing-load transfer law of the anchoring section of bolts. Through studying the prestress-loading experimental device of bolts, we found that increasing the initial preload could increase the axial force under the same conditions and the retarded anchoring section could control the axial-force loss of bolts in the middle of the anchoring section. Under the full-stress anchoring mode, the effect of applying a pre-tightening force was better than that of applying a pre-tightening force under traditional anchoring methods. Moreover, FLAC3D (Fast Lagrangian Analysis of Continua 3D; ITASCA (Ita sca International Inc), Minnesota, USA) numerical simulation calculation was performed. Under the full-stress anchoring mode of bolts, the increased anchoring length reduced the damage of the anchoring section, with a wider control range of the rock formation and higher strength of the compressive-stress anchoring zone. Based on the above research, four methods for applying the full-stress anchoring technology of bolts in engineering were proposed. The full-stress anchoring technology of bolts in the coal roadway has been applied in the support project of the return-air roadway at working face 3204 of the Taitou Coking Coal Mine of the Xiangning Coking Coal Group, Shanxi. The maximum moving distance of the roof and floor of the roadway was reduced from 200 to 42 mm, and the maximum moving distance on both coal sides was reduced from 330 to 86 mm. The full-stress anchoring technology of bolts was able to control the surrounding rock in the coal roadway.