Abstract. The influence of individual meteorological factors on different airborne pollutants has been massively conducted. However, few studies have considered the effect of temporal scales on the extracted pollutant-meteorology association. Based on Convergent Cross Mapping (CCM), we compared the influence of major meteorological factors on PM2.5, PM10 and O3 concentrations at the 3 h and 24 scale. In terms of the extracted dominant meteorological factor, the consistence between the analysis at 3 h and 24 h scale was relatively low, suggesting a large difference even from a qualitative perspective. In terms of the mean ρvalue, the effect of temporal scale on PM (PM2.5 and PM10)-Meteorology association was consistent, yet largely different from the temporal-scale effect on O3. Temperature was the most important meteorological factor for PM2.5, PM10 and O3 across China at both 3 h and 24 scale. For PM2.5 and PM10, the extracted PM-temperature association at the 24 h scale was stronger than that at the 3 h scale. Meanwhile, for summer O3, due to strong reactions between precursors, the extracted O3-temperature association at the 3 h scale was much stronger. Due to the discrete distribution, the extracted association between all pollutants and precipitation was much weaker at the 3 h scale. Similarly, the extracted PM-wind association was notably weaker at the 3 h scale. Due to precursor transport, summertime O3-wind association was stronger at the 3 h scale. For atmospheric pressure, the pollutant-pressure association was weaker at the 3 h scale except for summer, when interactions between atmospheric pressure and other meteorological factors were strong. From the spatial perspective, pollutant-meteorology association at 3 h and 24 h was more consistent in those heavily polluted regions. This research suggested that temporal scales should be carefully considered when extracting natural and anthropogenic drivers for airborne pollution.