Abstract. The variation in the concentrations of ambient PM2.5 (particles with an aerodynamic diameter less than 2.5 μm) generally forms a continuous sawtooth cycle with a recurring smooth increase followed by a sharp decrease. The abrupt decay of pollution episode is mostly meteorological in origin, and is controlled by the passage of synoptic systems. One affordable and effective measure for the quickly reducing PM2.5 concentrations in northern China is to wait for strong wind to arrive. However, it is still unclear how strong the wind needs to be and exactly what kind of synoptic system most effectively results in the rapid decay of air pollution episodes. PM2.5 variations over the 28 pollution channel cities of Beijing are investigated to determine the mechanisms by which synoptic patterns affect the decay processes of pollution episodes. This work shows more obvious day-to-day variations in PM2.5 concentration in winter than in summer, which implies that wintertime PM2.5 variations are more sensitive to meteorological factors. There were 365 decay processes from January 2014 to March 2020, and 97 of them were related to the effective wet deposition. 26 %~43 % of PM2.5 pollutant is removed by the wet deposition in different seasons. Two dominant circulation patterns are identified in summer, and the same three circulation types (CTs) are identified in the other three seasons based on the dry-day cases. The circulation patterns beneficial to the decay processes all exhibit a higher than normal surface wind speed, a negative relative humidity anomaly and positive divergence in the PM2.5 horizontal flux. In addition, CT1 in spring, autumn and winter is controlled by northeasterly wind and features the most significant horizontal net-outflow of air pollutants and effective upward spread of air pollutants to the free atmosphere, which promotes the abrupt reduction of local PM2.5 concentrations. CT2 is the most frequent synoptic pattern leading to decay processes in autumn and winter, and the domain region is located to the east of an anticyclone system. CT2 features a strong northwesterly wind of 2.98~3.88 m/s, the lowest relative humidity and the highest boundary layer height (BLH) among the three CTs, all of which are favorable for the reduction of PM2.5 concentrations. In CT3, a prevailing westerly wind anomaly occurs in the domain, with remarkable zonal divergence in the PM2.5 flux and strong horizontal wind shear in the near-surface under the boundary layer. PM2.5 concentrations show significant decreases of more than 37 %, 41 % and 27 % after the passage of CT1, CT2 and CT3, respectively. A dry air mass with a positive BLH anomaly and the effective horizontal outflow of air pollutants are the main reasons for the abrupt decay phase in summer. PM2.5 concentrations after the decay process show a significant decreasing trend from 2014 to 2020, reflecting successful emission mitigation. Emission reductions have led to a 4.3~5.7 μg/(m3.yr) decrease in PM2.5 concentrations in the 28 pollution channel cities of Beijing.
No abstract
Owing to a long-term, extensive development model and inadequate industrial development planning, cases of atmospheric environment pollution frequently occur in Hebei province. By using such approaches as the Spatial Gini Coefficient, the Herfindahl–Hirschman Index and location entropy, this paper analyzes the spatial-distribution characteristics of atmospheric pollution-intensive industries such as the thermal power industry in Hebei province. As shown, atmospheric pollution-intensive industries, such as the thermal power industry in Hebei province, excessively cluster. As industrial agglomeration continuously intensifies, the spatial imbalance becomes increasingly prominent. Taking the number of days with excellent air quality as a benchmark, this paper divides prefecture-level cities of Hebei province into four types of industrial management and designs targeted strategies for the optimization of atmospheric pollution-intensive industries, such as the thermal power industry. In terms of policies, Type I and Type II cities are advised to strengthen the transfer of atmospheric pollution-intensive industries such as the thermal power industry, and Type III and Type IV cities are advised to improve capacities in atmospheric self-purification and green-technology innovation in a bid to help government departments to scientifically manage atmospheric pollution-intensive industries such as the thermal power industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.