Since World War I, considerable amounts of warfare materials have been dumped at seas worldwide. After more than 70 years of resting on the seabed, reports suggest that the metal shells of these munitions are corroding, such that explosive chemicals leak out and distribute in the marine environment. Explosives such as TNT (2,4,6-trinitrotoluene) and its derivatives are known for their toxicity and carcinogenicity, thereby posing a threat to the marine environment. Toxicity studies suggest that chemical components of munitions are unlikely to cause acute toxicity to marine organisms. However, there is increasing evidence that they can have sublethal and chronic effects in aquatic biota, especially in organisms that live directly on the sea floor or in subsurface substrates. Moreover, munition-dumping sites could serve as nursery habitats for young biota species, demanding special emphasis on all kinds of developing juvenile marine animals. Unfortunately, these chemicals may also enter the marine food chain and directly affect human health upon consuming contaminated seafood. While uptake and accumulation of toxic munition compounds in marine seafood species such as mussels and fish have already been shown, a reliable risk assessment for the human seafood consumer and the marine ecosphere is lacking and has not been performed until now. In this review, we compile the first data and landmarks for a reliable risk assessment for humans who consume seafood contaminated with munition compounds. We hereby follow the general guidelines for a toxicological risk assessment of food as suggested by authorities.