The seas worldwide are threatened by a “new” source of pollution: millions of tons of all kind of warfare material have been dumped intentionally after World War I and II, in addition to mine barriers, failed detonations as well as shot down military planes and sunken ship wrecks carrying munitions. For example, in the German parts of the North and Baltic Sea approximately 1.6 million metric tons of toxic conventional explosives (TNT and others) and more than 5000 metric tons of chemical weapons are present. Such unexploded ordnance (UXO) constitutes a direct risk of detonation with increased human access (fisheries, water sports, cable constructions, wind farms and pipelines). Moreover, after more than 70 years of resting on the seabed, the metal shells of these munitions items corrode, such that chemicals leak out and distribute in the marine environment. Explosive chemicals such as TNT and its derivatives are known for their toxicity and carcinogenicity. In order not to endanger today's shipping traffic or the installation of pipelines and offshore plants by uncontrolled explosions, controlled blast-in-place (BiP) operations of these dangerous relics is a common practice worldwide. However, blast-in-place methods of in situ munitions disposal often result in incomplete (low-order) detonation, leaving substantial quantities of the explosive material in the environment. In the present free field investigation, we placed mussels (Mytilus spp.) as a biomonitoring system in an area of the Baltic Sea where BiP operations took place and where, by visual inspections by scientific divers, smaller and larger pieces of munitions-related materials were scattered on the seafloor. After recovery, the mussels were transferred to our laboratory and analyzed for TNT and its derivatives via gas chromatography and mass spectroscopy. Our data unequivocally demonstrate that low-order BiP operations of dumped munitions in the sea lead to multiple increases in the concentration of TNT and its metabolites in the mussels when compared to similar studies at corroding but still encased mines. For this reason, we explicitly criticize BiP operations because of the resulting environmental hazards, which can ultimately even endanger human seafood consumers.
To determine the amount of the explosives 1,3-dinitrobenzene, 2,4-dinitrotoluene, 2,4,6-trinitrotoluene, and its metabolites in marine samples, a toolbox of methods was developed to enhance sample preparation and analysis of various types of marine samples, such as water, sediment, and different kinds of biota. To achieve this, established methods were adapted, improved, and combined. As a result, if explosive concentrations in sediment or mussel samples are greater than 10 ng per g, direct extraction allows for time-saving sample preparation; if concentrations are below 10 ng per g, techniques such as freeze-drying, ultrasonic, and solid-phase extraction can help to detect even picogram amounts. Two different GC-MS/MS methods were developed to enable the detection of these explosives in femtogram per microliter. With a splitless injector, limits of detection (LODs) between 77 and 333 fg/µL could be achieved in only 6.25 min. With the 5 µL programmable temperature vaporization—large volume method (PTV-LVI), LODs between 8 and 47 fg/µL could be achieved in less than 7 min. The detection limits achieved by these methods are among the lowest published to date. Their reliability has been tested and confirmed by measuring large and diverse sample sets.
Millions of tons of all kind of munitions, including mines, bombs and torpedoes have been dumped after World War II in the marine environment and do now pose a new threat to the seas worldwide. Beside the acute risk of unwanted detonation, there is a chronic risk of contamination, because the metal vessels corrode and the toxic and carcinogenic explosives (trinitrotoluene (TNT) and metabolites) leak into the environment. While the mechanism of toxicity and carcinogenicity of TNT and its derivatives occurs through its capability of inducing oxidative stress in the target biota, we had the idea if TNT can induce the gene expression of carbonyl reductase in blue mussels. Carbonyl reductases are members of the short-chain dehydrogenase/reductase (SDR) superfamily. They metabolize xenobiotics bearing carbonyl functions, but also endogenous signal molecules such as steroid hormones, prostaglandins, biogenic amines, as well as sugar and lipid peroxidation derived reactive carbonyls, the latter providing a defence mechanism against oxidative stress and reactive oxygen species (ROS). Here, we identified and cloned the gene coding for carbonyl reductase from the blue mussel Mytilus spp. by a bioinformatics approach. In both laboratory and field studies, we could show that TNT induces a strong and concentration-dependent induction of gene expression of carbonyl reductase in the blue mussel. Carbonyl reductase may thus serve as a biomarker for TNT exposure on a molecular level which is useful to detect TNT contaminations in the environment and to perform a risk assessment both for the ecosphere and the human seafood consumer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.