Conductive rutile TiO2 has received considerable attention recently due to multiple applications. However, the permittivity in conductive, reduced or doped TiO2 appears to cause controversy with reported values in the range 100–10,000. In this work, we propose a method for measurements of the permittivity in conductive, n-type TiO2 that involves: (i) hydrogen ion-implantation to form a donor concentration peak at a known depth, and (ii) capacitance–voltage measurements for donor profiling. We cannot confirm the claims stating an extremely high permittivity of single crystalline TiO2. On the contrary, the permittivity of conductive, reduced single crystalline TiO2 is similar to that of insulating TiO2 established previously, with a Curie–Weiss type temperature dependence and the values in the range 160–240 along with the c-axis.