Studies on atomic layer deposition Al2O3/In0.53Ga0.47As interface formation mechanism based on air-gap capacitance-voltage method Appl. Phys. Lett. 101, 122102 (2012) A mathematical model for void evolution in silicon by helium implantation and subsequent annealing process J. Appl. Phys. 112, 064302 (2012) Void evolution in silicon under inert and dry oxidizing ambient annealing and the role of a Si1−xGex epilayer cap J. Appl. Phys. 112, 054909 (2012) Additional information on AIP Conf. Proc. Abstract. In this work, we investigated four possible mechanisms which were candidates to explain the shape of boron profiles after ion implantation and melting excimer laser annealing in silicon. A laser with a wavelength of 308 nm and a pulse duration of ~180 ns was used. To simulate this process, an existing model for the temperature and phase evolution was complemented with equations for the migration of dopants. Outdiffusion, thermodiffusion, segregation, and adsorption were investigated as possible mechanisms. As a result, we found that outdiffusion and segregation can be excluded as major mechanisms. Thermodiffusion as well as adsorption could both reproduce the build-up at low melt depths, but only adsorption the one at deeper melt depths. In both cases, ion beam mixing during SIMS measurement had to be taken into account to reproduce the measured profiles.