Electro-migration of ionized/electrically active impurities in CdZnTe (CZT) was successfully demonstrated at elevated temperature with an electric field of 20 V/mm. Copper, which exists in positively charged states, electro-migrated at a speed of 15 μm/h in an electric field of 20 V/mm. A notable variation in impurity concentration along the growth direction with the segregation tendency of the impurities was observed in an electro-migrated CZT boule. Notably, both Ga and Fe, which exist in positively charged states, exhibited the opposite distribution to that of their segregation tendency in Cd(Zn)Te. A CZT detector fabricated from the middle portion of the electro-migrated CZT boule showed an improved mobility-lifetime product of 0.91 × 10−2 cm2/V, compared with that of 1.4 × 10−3 cm2/V, observed in an as-grown (non-electro-migrated) CZT detector. The optimum radiation detector material would have minimum concentration of deep traps required for compensation.