Based on a posteriori error estimator with hierarchical bases, an adaptive weak Galerkin finite element method (WGFEM) is proposed for the elliptic problem with mixed boundary conditions. For the posteriori error estimator, we are only required to solve a linear algebraic system with diagonal entries corresponding to the degree of freedoms, which significantly reduces the computational cost. The upper and lower bounds of the error estimator are shown to addresses the reliability and efficiency of the adaptive approach. Numerical simulations are provided to demonstrate the effectiveness and robustness of the proposed method.