We consider the time-dependent Landau-Lifshitz-Gilbert equation. We prove that each weak solution coincides with the (unique) strong solution, as long as the latter exists in time. Unlike available results in the literature, our analysis also includes the physically relevant lower-order terms like Zeeman contribution, anisotropy, stray field, and the Dzyaloshinskii-Moriya interaction (which accounts for the emergence of magnetic Skyrmions). Moreover, our proof gives a template on how to approach weakstrong uniqueness for even more complicated problems, where LLG is (nonlinearly) coupled to other (nonlinear) PDE systems.
We consider a linear elliptic PDE and a quadratic goal functional.
The goal-oriented adaptive FEM algorithm (GOAFEM) solves the primal as well as a dual problem, where the goal functional is always linearized around the discrete primal solution at hand.
We show that the marking strategy proposed in [M. Feischl, D. Praetorius and K. G. van der Zee, An abstract analysis of optimal goal-oriented adaptivity, SIAM J. Numer. Anal.54 (2016), 3, 1423–1448] for a linear goal functional is also optimal for quadratic goal functionals, i.e., GOAFEM leads to linear convergence with optimal convergence rates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.