Plant-parasitic nematodes (PPNs) pose a serious threat to quantitative and qualitative production of many economic crops worldwide. An average worldwide crop loss of 12.6% (equaled $215.77 billion) annually has been estimated due to these nematodes for only the top 20 life-sustaining crops. Due to the growing dissatisfaction with hazards of chemical nematicides, interest in microbial control of PPNs is increasing and biological nematicides are becoming an important component of environmentally friendly management systems. Fungal and bacterial nematicides rank high among other biocontrol agents. In order to maximize their benefits, such bio-nematicides can be included in integrated nematode management (INM) programs, and ways that make them complimentary or superior to chemical nematode management methods were highlighted. This is especially important where bio-nematicides can act synergistically or additively with other agricultural inputs in integrated pest management programs. Consolidated use of bio-nematicides and other pesticides should be practiced on a wider basis. This is especially important, since there are many bio-nematicides which are or are likely to become widely available soon. Identification of research priorities for harnessing fungal and bacterial nematicides in sustainable agriculture as well as understanding of their ecology, biology, mode of action, and interaction with other agricultural inputs is still needed. Therefore, accessible fungal and bacterial nematicides with their comprehensive references and relevant information, i.e., the active ingredient, product name, type of formulation, producer, targeted nematode species and crop, and country of origin, are summarized herein.