Background: It is important to have precise image guidance throughout proton therapy in order to take advantage of the therapy's physical selectivity. Purpose: We evaluated the effectiveness of computed tomography (CT)-image guidance in proton therapy for patients with hepatocellular carcinoma (HCC) by assessing daily proton dose distributions. The importance of daily CT imageguided registration and daily proton dose monitoring for tumors and organs at risk (OARs) was investigated. Methods: A retrospective analysis was conducted using 570 sets of daily CT (dCT) images throughout whole treatment fractions for 38 HCC patients who underwent passive scattering proton therapy with either a 66 cobalt gray equivalent (GyE)/10 fractions (n = 19) or 76 GyE/20 fractions (n = 19) protocol. The actual daily delivered dose distributions were estimated by forward calculation using the dCT sets, their corresponding treatment plans, and the recorded daily couch correction information. We then evaluated the daily changes of the dose indices D 99% , V 30GyE , and D max for the tumor volumes, non-tumorous liver, and other OARs, that is, stomach, esophagus, duodenum, colon, respectively. Contours were created for all dCT sets. We validated the efficacy of the dCT-based tumor registrations (hereafter, "tumor registration") by comparing them with the bone registration and diaphragm registration as a simulation of the treatment based on the positioning using the conventional kV X-ray imaging. The dose distributions and the indices of three registrations were obtained by simulation using the same dCT sets. Results: In the 66 GyE/10 fractions, the daily D 99% value in both the tumor and diaphragm registrations agreed with the planned value with 3%-6% (SD), and the V 30GyE value for the liver agreed within ±3%; the indices in the bone registration showed greater deterioration. Nevertheless, tumor-dose deterioration occurred in all registration methods for two cases due to daily changes of body shape and respiratory condition. In the 76 GyE/20 fractions, in particular for such a treatment that the dose constraints for the OARs have to be cared in the original planning, the daily D 99% in the tumor registration was superior to that in the other registration (p < 0.001), indicating the effectiveness of the tumor registration. The dose constraints, set in the plan as the maximum dose for OARs (i.e., duodenum, stomach, colon, and esophagus) were maintained for 16 patients including seven treated with re-planning. For three patients, the daily 3274