IEEE 802.16j multi-hop relay network systems provide the mobile wireless communication environment. In such network systems, the handover scanning procedure allows a mobile station (MS) to obtain the information about the handover target base stations (BSs) or relay stations (RSs). The network systems need more time to negotiate the association parameters and to handle scanning the BSs and the RSs when the number of BS and RS increases. It results in more overhead for the handover scanning procedure. In order to accelerate the handover process and reduce the transmission interruption, efficient handover scanning procedure schemes and corresponding algorithms must be developed and designed. A novel relative angle computing algorithm is proposed in this article to accelerate the handover process by taking into account the moving behavior of the MS, and the distances among the MS, the RS, and the BS. The main idea of this algorithm is to reduce the management information overhead and to estimate the potential moving path of the MS in the wireless mobile communication networks. By using the proposed scheme, we eliminate the unnecessary associations and scanning intervals, and reduce the handover scanning procedure efficiently. Simulation result demonstrate the superior performance of our proposed scheme and its ability to strike the appropriate performance in the handover overhead and the message delay for IEEE 802.16j multi-hop relay network systems.