To satisfy the high data demands in future cellular networks, an ultra-densification approach is introduced to shrink the coverage of base station (BS) and improve the frequency reuse. In an ultra-densification approach, small cells such as relay node (RN), micro, pico and femto base stations (BSs) are deployed to the network of macro cells in the same geographic region, forming HetNet. HetNets introduce some notable challenges like inter-cell-interference-coordination (ICIC), mobility management and backhaul provisioning. In this paper, we investigate the performance of the hard handover (HHO) in 5G HetNets. The performance metrics are the total number of handovers and the outage probability. Simulation results show that the average outage probability is decreased in HetNet scenario compared the macro only scenario. However, this improvement comes at the expense of increase number of handovers.
In this paper, we propose an efficient macrodiversity handover (MDHO) technique for time‐division‐based interference‐limited IEEE 802.16j multihop wireless relay networks. In the proposed MDHO, when the diversity set members of the mobile station (MS) are a base station (BS) and relay station (RS), the MS receives the signal transmitted by the BS in the first phase. During the second phase, it also receives the simultaneous transmissions of the BS and RS. Furthermore, when the diversity set members are two RSs or two BSs, the MS receives only the simultaneous transmissions of the diversity set members. The superiority of the proposed MDHO is validated using analytical and simulation results. The performance analysis metrics are the average downlink (DL) carrier to interference and noise ratio (CINR), the average DL spectral efficiency, and the average service outage probability. Evaluation results show that the proposed MDHO significantly outperforms the conventional MDHO. The CINR gain achieved using the proposed MDHO is 4.71 dB compared to the conventional MDHO.
Inertial can be defined as disinclination to motion, action, or change. The inertia of an object is the propensity to remain at rest or if in motion, stays in motion at a steady speed. MPU6050 is one of the low-cost motion tracking sensors that contain a 3-axis gyroscope and 3-axis accelerometer orientation measurement. It is used to analyse the movement or location of a person in an indoor environment. This research is to analyse the accuracy of the inertial measurement of the MPU 6050 sensor. Next, is to improve the achievable accuracy rate up to 95% using the complementary filter and finally to visualize the results on an IoT platform. This MPU6050 sensor is beneficial to an emergency responder such as the firefighter’s department. The accurate inertial measurement and location will help to detect the movement and the motion of the firefighter during operation, especially in an indoor environment. The sensor will detect and collects the inertial measurement of an emergency responder and transmit the data wirelessly by using ESP8266 NodeMCU. Finally, the results can be viewed on an IoT platform. However, the results obtained from the MPU 6050 sensor is not perfectly accurate as there is noise during the measurement. Therefore, a complementary filter is used and analysed in this research. It is expected that the inertial location’s accuracy could be improved by 95% that will provide a precise movement and location of the firefighter during operation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.