The vacuolar ATPase H+ transporting V1 subunit B1 (ATP6V1B1) belongs to the family of ATP6Vs, which functions to transport hydrogen ions. The expression of ATP6V1B1 and associated clinicopathological features have been linked to various cancers; however, its role in epithelial ovarian cancer (EOC) has remained to be explored. The present study aimed to unveil the function, molecular mechanisms and clinical significance of ATP6V1B1 in EOC. The mRNA levels of ATP6V1 subunits A, B1 and B2 in EOC tissues were determined using data from the Gene Expression Profiling Interactive Analysis database and RNA sequencing. Protein levels of ATP6V1B1 were evaluated through immunohistochemistry staining of EOC, borderline, benign and normal epithelial tissues. The association between ATP6V1B1 expression and clinicopathological features and prognosis of patients with EOC was analyzed. Furthermore, the biological role of ATP6V1B1 in ovarian cancer cell lines was also assessed. RNA sequencing and public dataset analyses revealed elevated ATP6V1B1 mRNA levels in EOCs. High ATP6V1B1 protein levels were also observed in EOC compared with those of borderline and benign tumors and nonadjacent normal epithelial tissues. High ATP6V1B1 expression was associated with the serous cell type, advanced International Federation of Gynecology and Obstetrics stage, high/advanced tumor grade, elevated serum cancer antigen 125 levels and platinum resistance (P<0.001, P<0.001, P=0.035, P=0.029 and P=0.011, respectively). High expression levels of ATP6V1B1 were also associated with poor overall and disease-free survival (P<0.001). Knockdown of ATP6V1B1 decreased cancer cell proliferation and colony-forming abilities (P<0.001)
in vitro
by inducing cell cycle arrest in G0/G1 phase. Significant upregulation of ATP6V1B1 was observed in EOC and the prognostic significance and association with chemotherapy resistance of ATP6V1B1 in EOC was demonstrated, rendering it an EOC-related biomarker for prognostic evaluation and chemotherapy resistance, as well as a potential therapeutic target for patients with EOC.