“…These marine projects include genomes of marine haloarchaea and halobacteria, microorganisms from marine oxygen minimum zones, bacterioplankton clades, dark ocean microorganisms, marine red alga, marine protista, carbon monoxide oxidizing thermophiles, marine microbial communities from multiple species of wood-boring bivalves, hydrocarbon-degrading bacteria (including glucose-oxidizing and sulfate-reducing bacteria), ammonia-oxidizing bacteria, bacterial symbionts of gutless marine worms, actinomycetes, flavobacteria, and other marine bacterial strains. The recent years have clearly shown that these genome studies gave important clues on the marine life in terms of symbiosis (Müller et al, 2004), defense mechanisms (Thakur et al, 2005) and biopolymer production (Sogutcu et al, 2012), and expected to accelerate marine biotechnology especially via better understanding of the organisms' genetics and metabolism, improvement of cultivation techniques for these marine organisms, discovery of novel pathways for energy and carbon use, development of efficient and profitable production schemes by use of different hydrocarbons for energy sources, and discovery of novel commercial applications of marine organisms, in near future.…”