Current coronavirus disease-2019 (COVID-19) pandemic has caused massive loss of lives. Clinical trials of vaccines and drugs are currently being conducted around the world; however, till now no effective drug is available for COVID-19. Identification of key genes and perturbed pathways in COVID-19 may uncover potential drug targets and biomarkers. We aimed to identify key gene modules and hub targets involved in COVID-19. We have analyzed SARS-CoV-2 infected peripheral blood mononuclear cell (PBMC) transcriptomic data through gene coexpression analysis. We identified 1520 and 1733 differentially expressed genes (DEGs) from the GSE152418 and CRA002390 PBMC datasets, respectively (FDR < 0.05). We found four key gene modules and hub gene signature based on module membership (MMhub) statistics and protein–protein interaction (PPI) networks (PPIhub). Functional annotation by enrichment analysis of the genes of these modules demonstrated immune and inflammatory response biological processes enriched by the DEGs. The pathway analysis revealed the hub genes were enriched with the IL-17 signaling pathway, cytokine–cytokine receptor interaction pathways. Then, we demonstrated the classification performance of hub genes (PLK1, AURKB, AURKA, CDK1, CDC20, KIF11, CCNB1, KIF2C, DTL and CDC6) with accuracy >0.90 suggesting the biomarker potential of the hub genes. The regulatory network analysis showed transcription factors and microRNAs that target these hub genes. Finally, drug–gene interactions analysis suggests amsacrine, BRD-K68548958, naproxol, palbociclib and teniposide as the top-scored repurposed drugs. The identified biomarkers and pathways might be therapeutic targets to the COVID-19.
Type 2 diabetes mellitus is a major global public health burden. A complex metabolic disease, type 2 diabetes affects multiple different tissues, demanding a "systems medicine" approach to biomarker and novel diagnostic discovery, not to mention data integration across omics-es. In the present study, transcriptomics data from different tissues including beta-cells, pancreatic islets, arterial tissue, peripheral blood mononuclear cells, liver, and skeletal muscle of 228 samples were integrated with protein-protein interaction data and genome scale metabolic models to unravel the molecular and tissue-specific biomarker signatures of type 2 diabetes mellitus. Classifying differentially expressed genes, reconstruction and topological analysis of active protein-protein interaction subnetworks indicated that genomic reprogramming depends on the type of tissue, whereas there are common signatures at different levels. Among all tissue and cell types, Mannosidase Alpha Class 1A Member 2 was the common signature at genome level, and activation-ppara reaction, which stimulates a nuclear receptor protein, was found out as the mutual reporter at metabolic level. Moreover, miR-335 and miR-16-5p came into prominence in regulation of transcription at different tissues. On the other hand, distinct signatures were observed for different tissues at the metabolome level. Various coenzyme-A derivatives were significantly enriched metabolites in pancreatic islets, whereas skeletal muscle was enriched for cholesterol, malate, L-carnitine, and several amino acids. Results have showed utmost importance concerning relations between T2D and cancer, blood coagulation, neurodegenerative diseases, and specific metabolic and signaling pathways.
Dysfunctions and disorders in the ovary lead to a host of diseases including ovarian cancer, ovarian endometriosis, and polycystic ovarian syndrome (PCOS). Understanding the molecular mechanisms behind ovarian diseases is a great challenge. In the present study, we performed a meta-analysis of transcriptome data for ovarian cancer, ovarian endometriosis, and PCOS, and integrated the information gained from statistical analysis with genome-scale biological networks (protein-protein interaction, transcriptional regulatory, and metabolic). Comparative and integrative analyses yielded reporter biomolecules (genes, proteins, metabolites, transcription factors, and micro-RNAs), and unique or common signatures at protein, metabolism, and transcription regulation levels, which might be beneficial to uncovering the underlying biological mechanisms behind the diseases. These signatures were mostly associated with formation or initiation of cancer development, and pointed out the potential tendency of PCOS and endometriosis to tumorigenesis. Molecules and pathways related to MAPK signaling, cell cycle, and apoptosis were the mutual determinants in the pathogenesis of all three diseases. To our knowledge, this is the first report that screens these diseases from a network medicine perspective. This study provides signatures which could be considered as potential therapeutic targets and/or as medical prognostic biomarkers in further experimental and clinical studies. Abbreviations DAVID: Database for Annotation, Visualization and Integrated Discovery; DEGs: differentially expressed genes; GEO: Gene Expression Omnibus; KEGG: Kyoto Encyclopedia of Genes and Genomes; LIMMA: Linear Models for Microarray Data; MBRole: Metabolite Biological Role; miRNA: micro-RNA; PCOS: polycystic ovarian syndrome; PPI: protein-protein interaction; RMA: Robust Multi-Array Average; TF: transcription factor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.