Full quantum chemical calculations, using density functional theory (DFT), have been conducted to explain the effect of donors on the “activation mechanism” in the Ziegler–Natta (Z–N) catalyst system. In the activation mechanism, the inactive TiIVCl4 catalyst converts into the active TiIIICl2Et catalyst with the help of the AlEt3 present in the system. The donors that have been considered in this study are: ethyl benzoate (eb), two representative diether cases, a phthalate donor, and a silyl ester donor. The results indicate that eb and the diether donor cases donor have a negative effect on the barriers for the activation mechanism. However, the eb donor can be displaced from the MgCl2 surface by AlEt3, which matches experimental observations. For the phthalate, silyl ester and TiCl3–OC4H8Cl cases, the results indicate that a significant induction period would be present in Z–N systems employing such donors or having such a catalytic center, before catalysis could commence.