The impact of observations on analysis uncertainty and forecast performance was investigated for austral spring 2010 over the southern polar area for four different systems (NRL, GMAO, ECMWF and Météo-France) at the time of the Concordiasi field experiment. The largest multi-model variance in 500 hPa height analyses is found in the southern sub-Antarctic oceanic region, where there are rapidly evolving weather systems, rapid forecast-error growth, and fewer upper-air wind observation data to constrain the analyses. The total impact of all observations on the model forecast was computed using the 24 h forecast sensitivity-to-observations diagnostic. Observation types that contribute most to the reduction of the forecast error are shown to be AMSU, IASI, AIRS, GPS-RO, radiosonde, surface and atmospheric motion vector observations. For sounding data, radiosondes and dropsondes, one can note a large impact on the analysis and forecasts of temperature at low levels and a large impact of wind at high levels. Observing system experiments using the Concordiasi dropsondes show a large impact of the observations over the Antarctic plateau extending to lower latitudes with the forecast range, with the largest impact around 50-70 • S. These experiments indicate there is a potential benefit from using radiance data better over land and sea-ice and from innovative atmospheric motion vectors obtained from a combination of various satellites to fill the current data gaps and improve numerical weather prediction analyses in this region.