This paper proposes a data-driven human-like driver model (HDM) based on the analysis and understanding of human drivers’ behavior in path-tracking tasks. The proposed model contains a visual perception module and a decision-making module. The visual perception module was established to extract the visual inputs, including road information and vehicle motion states, which can be perceived by human drivers. The extracted inputs utilized for lateral steering decisions can reflect specific driving skills exhibited by human drivers like compensation control, preview behavior, and anticipation ability. On this basis, an adaptive neuro-fuzzy inference system (ANFIS) was adopted to design the decision-making module. The inputs of the ANFIS include the vehicle speed, lateral deviation in the near zone, and heading angle error in the far zone. The output is the steering wheel angle. ANFIS can mimic the fuzzy reasoning characteristics of human driving behavior. Next, a large amount of human driving data was collected through driving simulator experiments. Based on the data, the HDM was established. Finally, the results of the joint simulation under PreScan/MATLAB verified the superior performances of the proposed HDM.