Post-transcriptional control of mitochondrial gene expression, including the
processing and generation of mature transcripts as well as their degradation, is a
key regulatory step in gene expression in human mitochondria. Consequently,
identification of the proteins responsible for RNA processing and degradation in this
organelle is of great importance. The metallo-β-lactamase (MBL) is a candidate
protein family that includes ribo- and deoxyribonucleases. In this study, we
discovered a function for LACTB2, an orphan MBL protein found in mammalian
mitochondria. Solving its crystal structure revealed almost perfect alignment of the
MBL domain with CPSF73, as well as to other ribonucleases of the MBL superfamily.
Recombinant human LACTB2 displayed robust endoribonuclease activity on ssRNA with a
preference for cleavage after purine-pyrimidine sequences. Mutational analysis
identified an extended RNA-binding site. Knockdown of LACTB2 in cultured cells caused
a moderate but significant accumulation of many mitochondrial transcripts, and its
overexpression led to the opposite effect. Furthermore, manipulation of LACTB2
expression resulted in cellular morphological deformation and cell death. Together,
this study discovered that LACTB2 is an endoribonuclease that is involved in the
turnover of mitochondrial RNA, and is essential for mitochondrial function in human
cells.