To establish functional circuitry, retinal neurons occupy spatial domains by arborizing their processes, which requires the selfavoidance of neurites from an individual cell, and by spacing their cell bodies, which requires positioning the soma and establishing a zone within which other cells of the same type are excluded 1 . The mosaic patterns of distinct cell types form independently and overlap. The cues that direct these processes in the vertebrate retina are not known 2,3 . Here we show that some types of retinal amacrine cells from mice with a spontaneous mutation in Down syndrome cell adhesion molecule (Dscam), a gene encoding an immunoglobulin-superfamily member adhesion molecule 4,5 , have defects in the arborization of processes and in the spacing of cell bodies. In the mutant retina, cells that would normally express Dscam have hyperfasciculated processes, preventing them from creating an orderly arbor. Also, their cell bodies are randomly distributed or pulled into clumps rather than being regularly spaced mosaics. Our results indicate that mouse DSCAM mediates isoneuronal self-avoidance for arborization and heteroneuronal self-avoidance within specific cell types to prevent fasciculation and to preserve mosaic spacing. These functions are analogous to those of Drosophila DSCAM (ref. 6) and DSCAM2 (ref. 7). DSCAM may function similarly in other regions of the mammalian nervous system, and this role may extend to other members of the mammalian Dscam gene family.We have identified a spontaneous mutation in mice that creates a loss-of-function allele of Dscam, the Drosophila homologues of which function in both isoneuronal self-avoidance for dendrite arborization and heteroneuronal self-avoidance for axon tiling [7][8][9][10][11][12] . The recessive mutation arose in the BALB/cByJ genetic background and caused an overt neurological phenotype. Mutant and wild-type mice are indistinguishable at birth, but are severely uncoordinated by postnatal day 3 (P3); as adults, the mutant mice have spontaneous seizures and kyphosis, but are fertile and long-lived (.24 months; see http://www.jax.org/research/media/wild_type.html for video). Through positional cloning (see Methods), a mutation was identified in Dscam. Sequencing of genomic and complementary DNA from affected mice revealed a 38-bp deletion in exon 17, causing a frame shift resulting in ten unique amino acids followed by a premature stop codon (Supplementary Fig. 1). This mutation truncates the protein in the second fibronectin repeat (Fig. 1a). Dscam messenger RNA levels in the brain were reduced by 70% in affected mice, consistent with nonsense-mediated decay (Fig. 1b).