A neuron's dendrites typically do not cross one another. This intrinsic self-avoidance mechanism ensures unambiguous processing of sensory or synaptic inputs. Moreover, some neurons respect the territory of others of the same type, a phenomenon known as tiling. Different types of neurons, however, often have overlapping dendritic fields. We found that Down's syndrome Cell Adhesion Molecule (Dscam) is required for dendritic self-avoidance of all four classes of Drosophila dendritic arborization (da) neurons. However, neighboring mutant class IV da neurons still exhibited tiling, suggesting that self-avoidance and tiling differ in their recognition and repulsion mechanisms. Introducing 1 of the 38,016 Dscam isoforms to da neurons in Dscam mutants was sufficient to significantly restore self-avoidance. Remarkably, expression of a common Dscam isoform in da neurons of different classes prevented their dendrites from sharing the same territory, suggesting that coexistence of dendritic fields of different neuronal classes requires divergent expression of Dscam isoforms.
Many neural progenitors, including Drosophila mushroom body (MB) and projection neuron (PN) neuroblasts, sequentially give rise to different subtypes of neurons throughout development. We identified a novel BTB-zinc finger protein, named Chinmo (Chronologically inappropriate morphogenesis), that governs neuronal temporal identity during postembryonic development of the Drosophila brain. In both MB and PN lineages, loss of Chinmo autonomously causes early-born neurons to adopt the fates of late-born neurons from the same lineages. Interestingly, primarily due to a posttranscriptional control, MB neurons born at early developmental stages contain more abundant Chinmo than their later-born siblings. Further, the temporal identity of MB progeny can be transformed toward earlier or later fates by reducing or increasing Chinmo levels, respectively. Taken together, we suggest that a temporal gradient of Chinmo (Chinmo(high) --> Chinmo(low)) helps specify distinct birth order-dependent cell fates in an extended neuronal lineage.
Ubiquitin-proteasome system (UPS) is a multistep protein degradation machinery implicated in many diseases. In the nervous system, UPS regulates remodeling and degradation of neuronal processes and is linked to Wallerian axonal degeneration, though the ubiquitin ligases that confer substrate specificity remain unknown. Having shown previously that class IV dendritic arborization (C4da) sensory neurons in Drosophila undergo UPS-mediated dendritic pruning during metamorphosis, we conducted an E2/E3 ubiquitinating enzyme mutant screen, revealing that mutation in ubcD1, an E2 ubiquitin-conjugating enzyme, resulted in retention of C4da neuron dendrites during metamorphosis. Further, we found that UPS activation likely leads to UbcD1-mediated degradation of DIAP1, a caspase-antagonizing E3 ligase. This allows for local activation of the Dronc caspase, thereby preserving C4da neurons while severing their dendrites. Thus, in addition to uncovering E2/E3 ubiquitinating enzymes for dendrite pruning, this study provides a mechanistic link between UPS and the apoptotic machinery in regulating neuronal process remodeling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.