Abstract. We report new information on tree water use by Mongolian Scots pine (Pinus sylvestris var. mongolica) growing on a sandy soil, in a region characterised by an erratic rainfall pattern. Measurements were made over three successive years 10 of contrasting annual rainfall -a wet year (2013), a dry year (2014), and a second dry year (2015). The result was the development of worsening levels of drought year by year. Over the three years, sap flux density (Js) was measured at individual tree level in up to 25 trees. The sap flux density values were up-scaled to estimate tree water use at plot level (Ts). Our measurements follow forest plot response to increasing levels of drought which developed over a three-year period as soil moisture conditions gradually worsened from wet, to moderate-drought, to severe-drought, to extreme-drought, in response to the dynamics of a values decreasing by 5-46% in response to moderate drought, by 48-62% in response to severe drought and by 65% in response to extreme drought. Upon release of moderate drought by heavy rainfall in 2013, daily Ts recovered completely. However, under the severe and extreme droughts in the subsequent dry years, recovery of Ts following heavy rainfall was incomplete (57-58%). Our results highlight the negative effects of water stress on the growth of mature forest trees, in a sandy soil, in a climate characterised by large intra-and inter-annual variances in rainfall. When the erratic rainfall and sandy soil were 25 also coupled with a declining groundwater table, the result was tree water use fluctuated widely over quite short time scales (months or weeks). Overall, our findings account for the observed premature degradation of these MP plantations in terms of an eco-hydrological perspective.