BackgroundThe exacting nutritional requirements and complicated life cycles of parasites mean that they are not always amenable to high-throughput drug screening using automated procedures. Therefore, we have engineered the yeast Saccharomyces cerevisiae to act as a surrogate for expressing anti-parasitic targets from a range of biomedically important pathogens, to facilitate the rapid identification of new therapeutic agents.Methodology/Principal FindingsUsing pyrimethamine/dihydrofolate reductase (DHFR) as a model parasite drug/drug target system, we explore the potential of engineered yeast strains (expressing DHFR enzymes from Plasmodium falciparum, P. vivax, Homo sapiens, Schistosoma mansoni, Leishmania major, Trypanosoma brucei and T. cruzi) to exhibit appropriate differential sensitivity to pyrimethamine. Here, we demonstrate that yeast strains (lacking the major drug efflux pump, Pdr5p) expressing yeast (ScDFR1), human (HsDHFR), Schistosoma (SmDHFR), and Trypanosoma (TbDHFR and TcDHFR) DHFRs are insensitive to pyrimethamine treatment, whereas yeast strains producing Plasmodium (PfDHFR and PvDHFR) DHFRs are hypersensitive. Reassuringly, yeast strains expressing field-verified, drug-resistant mutants of P. falciparum DHFR (Pfdhfr
51I,59R,108N) are completely insensitive to pyrimethamine, further validating our approach to drug screening. We further show the versatility of the approach by replacing yeast essential genes with other potential drug targets, namely phosphoglycerate kinases (PGKs) and N-myristoyl transferases (NMTs).Conclusions/SignificanceWe have generated a number of yeast strains that can be successfully harnessed for the rapid and selective identification of urgently needed anti-parasitic agents.