SummaryWe demonstrate a role in oxidative and metal stress resistance for the MAPK-activated protein kinases Rck1 and Rck2 in Saccharomyces cerevisiae . We show that Hog1 is robustly phosphorylated in a Pbs2-dependent way during oxidative stress, and that Rck2 also is phosphorylated under these circumstances. Hog1 concentrates in the nucleus in oxidative stress. Hog1 localization is partially dependent on Rck2, as rck2 cells have more nuclear Hog1 than wild-type cells. We find several proteins with a role in oxidative stress resistance using Rck1 or Rck2 as baits in a two-hybrid screen. We identify the transcription factor Yap2 as a putative target for Rck1, and the Zn 2 + transporter Zrc1 as a target for Rck2. Yap2 is normally cytoplasmic, but rapidly migrates to the nucleus upon exposure to oxidative stress agents. In a fraction of untreated pbs2 cells, Yap2 is nuclear. Zrc1 coimmunoprecipitates with Rck2, and ZRC1 is genetically downstream of RCK2 . These data connect activation of the Hog1 MAPK cascade with effectors having a role in oxidative stress resistance.
There is an urgent need to make drug discovery cheaper and faster. This will enable the development of treatments for diseases currently neglected for economic reasons, such as tropical and orphan diseases, and generally increase the supply of new drugs. Here, we report the Robot Scientist ‘Eve’ designed to make drug discovery more economical. A Robot Scientist is a laboratory automation system that uses artificial intelligence (AI) techniques to discover scientific knowledge through cycles of experimentation. Eve integrates and automates library-screening, hit-confirmation, and lead generation through cycles of quantitative structure activity relationship learning and testing. Using econometric modelling we demonstrate that the use of AI to select compounds economically outperforms standard drug screening. For further efficiency Eve uses a standardized form of assay to compute Boolean functions of compound properties. These assays can be quickly and cheaply engineered using synthetic biology, enabling more targets to be assayed for a given budget. Eve has repositioned several drugs against specific targets in parasites that cause tropical diseases. One validated discovery is that the anti-cancer compound TNP-470 is a potent inhibitor of dihydrofolate reductase from the malaria-causing parasite Plasmodium vivax.
Background: The uptake of drugs into cells has traditionally been considered to be predominantly via passive diffusion through the bilayer portion of the cell membrane. The recent recognition that drug uptake is mostly carrier-mediated raises the question of which drugs use which carriers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.