Background
Interindividual variability in methadone disposition remains unexplained, and methadone accidental overdose in pain therapy is a significant public health problem. Cytochrome P4502B6 (CYP2B6) is the principle determinant of clinical methadone elimination. The CYP2B6 gene is highly polymorphic, with several variant alleles. CYP2B6.6, the protein encoded by the CYP2B6*6 polymorphism, deficiently catalyzes methadone metabolism in vitro. This investigation determined the influence of CYP2B6*6, and other allelic variants encountered, on methadone concentrations, clearance, and metabolism.
Methods
Healthy volunteers in genotype cohorts CYP2B6*1/*1 (n=21), CYP2B6*1/*6 (n=20), and CYP2B6*6/*6 (n=17), and also CYP2B6*1/*4 (n=1), CYP2B6*4/*6 (n=3), CYP2B6*5/*5 (n=2) subjects received single doses of intravenous and oral methadone. Plasma and urine methadone and metabolite concentrations were determined by tandem mass spectrometry.
Results
Average S-methadone apparent oral clearance was 35 and 45% lower in CYP2B6*1/*6 and CYP2B6*6/*6 genotypes, respectively, compared with CYP2B6*1/*1, and R-methadone apparent oral clearance was 25 and 30% lower. R- and S-methadone apparent oral clearance was 3- and 4-fold greater in CYP2B6*4 carriers. Intravenous and oral R- and S-methadone metabolism was significantly lower in CYP2B6*6 carriers compared with CYP2B6*1 homozygotes, and greater in CYP2B6*4 carriers. Methadone metabolism and clearance were lower in African-Americans due to the CYP2B6*6 genetic polymorphism.
Conclusions
CYP2B6 polymorphisms influence methadone plasma concentrations, due to altered methadone metabolism and thus clearance. Genetic influence is greater for oral than intravenous, and S- than R-methadone. CYP2B6 pharmacogenetics explains, in part, interindividual variability in methadone elimination. CYP2B6 genetic effects on methadone metabolism and clearance may identify subjects at risk for methadone toxicity and drug interactions.